Manifold learning for parameter reduction

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multilevel Nonlinear Dimensionality Reduction for Manifold Learning

Nonlinear dimensionality reduction techniques for manifold learning, e.g., Isomap, may become exceedingly expensive to carry out for large data sets. This paper explores a multilevel framework with the goal of reducing the cost of unsupervised manifold learning. In addition to savings in computational time, the proposed multilevel technique essentially preserves the geodesic information, and so...

متن کامل

Riemannian Manifold Learning for Nonlinear Dimensionality Reduction

In recent years, nonlinear dimensionality reduction (NLDR) techniques have attracted much attention in visual perception and many other areas of science. We propose an efficient algorithm called Riemannian manifold learning (RML). A Riemannian manifold can be constructed in the form of a simplicial complex, and thus its intrinsic dimension can be reliably estimated. Then the NLDR problem is sol...

متن کامل

Distance Preserving Dimension Reduction for Manifold Learning

Manifold learning is an effective methodology for extracting nonlinear structures from high-dimensional data with many applications in image analysis, computer vision, text data analysis and bioinformatics. The focus of this paper is on developing algorithms for reducing the computational complexity of manifold learning algorithms, in particular, we consider the case when the number of features...

متن کامل

A unified semi-supervised dimensionality reduction framework for manifold learning

We present a general framework of semi-supervised dimensionality reduction for manifold learning which naturally generalizes existing supervised and unsupervised learning frameworks which apply the spectral decomposition. Algorithms derived under our framework are able to employ both labeled and unlabeled examples and are able to handle complex problems where data form separate clusters of mani...

متن کامل

A supervised non-linear dimensionality reduction approach for manifold learning

In this paper we introduce a novel supervised manifold learning technique called Supervised Laplacian Eigenmaps (S-LE), which makes use of class label information to guide the procedure of non-linear dimensionality reduction by adopting the large margin concept. The graph Laplacian is split into two components: within-class graph and between-class graph to better characterize the discriminant p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 2019

ISSN: 0021-9991

DOI: 10.1016/j.jcp.2019.04.015